MARS SCIENCE LABORATORY - FINALLY SOME HONESTY?
Martian sands blow around too much. Will MSL say why?
On Saturday, November 26, 2011, I walked out behind my apartment in Daytona Beach Shores, Florida, and watched the Mars Science Laboratory blast off for Mars. After the Sabbath I checked the Codes to see if the mission is encoded with success or falure. The practical limit of axis terms at an ELS is usually 8 to 10 letters. To write Mars Science Laboratory in Hebrew, as found on-line, requires 5 letters for Mars, 3 for Science, and 5 more for Laboratory, a total of 13 letters. In 14 years of Code research, I never found an axis term that long. Therefore, to search for this term I sought MARS SCIENCE as the axis term, and LABORATORY as the first a-priori key word. As is shown on the matrix below, LABORATORY is at skip +1, the best possible scenario for a key word, though the axis term is only at its 4th lowest ELS. I then sought synonyms for the words SUCCESSFUL (found at skip -1, a special case skip) and FAILURE (not on the matrix). Finally, because I had a question about whether this mission would produce honest or dishonest results given past claims about low Martian air pressure (disputed by my son and I at this year's Mars Society Convention), I sought words for honest and dishonest. There were no special case skips found for either word, with the best ELS at skip +2 for HONEST, but to show it required expansion of the matrix from 260 letters to 288 letters.
STATISTICAL CALCULATION
NASA Orbiter Catches Mars Sand Dunes In Motion
Nov. 17, 2011, RELEASE : 11-391 by:
WASHINGTON -- Images from NASA's Mars Reconnaissance Orbiter (MRO) show sand dunes and ripples moving across the surface of Mars at dozens of locations and shifting up to several yards. These observations reveal the planet's sandy surface is more dynamic than previously thought.
"Mars either has more gusts of wind than we knew about before, or the winds are capable of transporting more sand," said Nathan Bridges, planetary scientist at the Johns Hopkins University's Applied Physics Laboratory in Laurel, Md., and lead author of a paper on the finding published online in the journal Geology (This writer's note: winds can only be more capable of transporting sand if the air is denser than believed). "We used to think of the sand on Mars as relatively immobile, so these new observations are changing our whole perspective." While red dust is known to swirl all around Mars in storms and dust devils, the planet's dark sand grains are larger and harder to move. Less than a decade ago, scientists thought the dunes and ripples on Mars either did not budge or moved too slowly for detection.
MRO was launched in 2005. Initial images from the spacecraft's High Resolution Imaging Science Experiment (HiRISE) camera documented only a few cases of shifting sand dunes and ripples, collectively called bedforms. Now, after years of monitoring the martian surface, the spacecraft has documented movements of a few yards or meters per year in dozens of locations across the planet.
The air on Mars is thin, so stronger gusts of wind are needed to push a grain of sand. Wind-tunnel experiments have shown that a patch of sand would take winds of about 80 mph to move on Mars compared with only 10 mph on Earth. Measurements from the meteorology experiments on NASA's Viking landers in the 1970s and early 1980s, in addition to climate models, showed such winds should be rare on Mars.
The first hints that Martian dunes move came from NASA's Mars Global Surveyor, which operated from 1997 to 2006. But the spacecraft's cameras lacked the resolution to definitively detect the changes. NASA's Mars Exploration Rovers also detected hints of shifting sand when they touched down on the red planet's surface in 2004. The mission team was surprised to see grains of sand dotting the rovers' solar panels. They also witnessed the rovers' track marks filling in with sand.
"Sand moves by hopping from place to place," said Matthew Golombek, a co-author of the new paper and a member of the Mars Exploration Rover and MRO teams at NASA's Jet Propulsion Laboratory in Pasadena, Calif.
Not all of the sand on Mars is blowing in the wind. The study also identifies several areas where the bedforms did not move.
"The sand dunes where we didn't see movement today could have larger grains, or perhaps their surface layers are cemented together," said Bridges, who also is a member of the HiRISE team. "These studies show the benefit of long-term monitoring at high resolution."
According to scientists, the seemingly stationary areas might move on much larger time scales, triggered by climate cycles on Mars that last tens of thousands of years. The tilt of Mars' axis relative to its orbital plane can vary dramatically. This, combined with the oval shape of Mars' orbit, can cause extreme changes in the Martian climate, much greater than those experienced on Earth. Mars may once have been warm enough that the carbon dioxide now frozen in the polar ice caps could have been free to form a thicker atmosphere, leading to stronger winds capable of transporting sand.
HiRISE is operated by the University of Arizona in Tucson. The instrument was built by Ball Aerospace & Technologies Corp. of Boulder, Colo. The Mars Exploration Rovers Opportunity and Spirit were built by JPL. JPL also manages the MRO and Mars Exploration Rover projects for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems of Denver is NASA's industry partner for the MRO Project and built the spacecraft.
MRO images and additional information is available online at:http://www.nasa.gov/mission_pages/MRO
29 Sep 2011
New analysis of data sent back by the SPICAM spectrometer on board ESA's Mars Express spacecraft has revealed for the first time that the planet's atmosphere is supersaturated with water vapour. This surprising discovery has major implications for understanding the Martian water cycle and the historical evolution of the atmosphere.
This lack of direct measurements has meant that descriptions of the vertical distribution of water vapour – a key factor in the study of Mars' hydrological cycle – has generally been based upon global climate models.
This gap in the data has now been addressed by the SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) imaging spectrometer on Mars Express.
The instrument can be used in occultation mode, when it studies light from the Sun that has passed through the planet's atmosphere just after sunrise or before sunset. The measurements can then be analysed to generate vertical concentration profiles for several atmospheric constituents, including water vapour.
Surprising new results, based on SPICAM data obtained during the northern spring and summer, indicate that the vertical distribution of water vapour in the Martian atmosphere is very different from previous assumptions.
Writing in this week's issue of the journal Science, an international team led by Luca Maltagliati of the Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) in Guyancourt, France, describe SPICAM observations at infrared wavelengths that for the first time provide evidence for the existence of supersaturated water vapour on Mars.
Supersaturation
The atmosphere of Mars holds
Under normal conditions on Earth, water vapour condenses around tiny dust or aerosol particles or salts when the atmospheric temperature drops below a certain "dew point". The atmosphere is then said to be "saturated", since it cannot hold any more moisture at that temperature and pressure. Any water vapour in excess of the "dew point" will normally condense to form droplets or icy crystals.
However, supersaturation may occur when some of the water vapour remains in the atmosphere, instead of condensing or freezing. When condensation nuclei (assumed to be dust aerosols on Mars) are too rare, condensation is impeded, leaving substantial amounts of excess vapour.
Until now, it was generally assumed that such supersaturation cannot exist in the cold Martian atmosphere: any water vapour in excess of saturation was expected to be converted immediately into ice. However, the SPICAM data have revealed that supersaturation occurs frequently in the middle atmosphere – at altitudes of up to 50 km above the surface – during the aphelion season, the period when Mars is near its farthest point from the Sun.
Extremely high levels of supersaturation were found on Mars, up to 10 times greater than those found on Earth. Clearly, there is much more water vapour in the upper Martian atmosphere than anyone ever imagined. It seems that previous models have greatly underestimated the quantities of water vapour at heights of 20–50 km, with as much as 10 to 100 times more water than expected at this altitude.
"The vertical distribution of water vapour is a key factor in the study of Mars' hydrological cycle, and the old paradigm that it is mainly controlled by saturation physics now needs to be revised," said Luca Maltagliati. "Our finding has major implications for understanding the planet's global climate and the transport of water from one hemisphere to the other."
"The data suggest that much more water vapour is being carried high enough in the atmosphere to be affected by photodissociation," added Franck Montmessin, also from LATMOS, who is the Principal Investigator for SPICAM and a co-author of the paper.
"Solar radiation can split the water molecules into oxygen and hydrogen atoms, which can then escape into space. This has implications for the rate at which water has been lost from the planet and for the long-term evolution of the Martian surface and atmosphere."
The new paper analyses SPICAM data obtained when the Martian atmosphere is relatively dust-free. The absence of dust enables the instrument to measure the vertical profile to within 10 km of the planet's surface. The supersaturation levels are likely to plummet in the southern summer, when dust storms inject large amounts of aerosols into the atmosphere, increasing the supply of condensation nuclei.
Reference publication
"Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars", by L. Maltagliati, F. Montmessin, A. Fedorova, O. Korablev, F. Forget, and J.-L. Bertaux, published in the 30 September 2011 issue of Science.
Contacts
Luca Maltagliati
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
78280 Guyancourt
France
Email: luca.maltagliatilatmos.ipsl.fr
Phone: +33 1 80 28 52 82
Franck Montmessin
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
78280 Guyancourt
France
Email: franck.montmessinlatmos.ipsl.fr
Phone: +33 1 80 28 52 85
Olivier Witasse
Mars Express Project Scientist
Research and Scientific Support Department
Directorate of Science & Robotic Exploration
ESA, The Netherlands
Email: owitasserssd.esa.it
Phone: +31 71 5658015